

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.




            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  —
title: Environments
order: 1
—

## Environments

A _tipi.build_ environment consits of 2 elements:


	CMake toolchain file


	OS image




The OS images are described via the help of Packer files and can be automatically deployed on the tipi.build cloud as many-core build agent or as execution environment for unit test.

Officially supported environments can be found as <environment>.pkr.js + <environment>.cmake file pairs in the [tipi-build/environments](https://github.com/tipi-build/environments) github repository.

While emphasizes on providing a default environment for each major platform, community maintained or private environments are welcome.

As a good starting point tipi always provides at clean and up-to-date clang with libc++ STL for following environments:


	Webassembly: tipi build . -t wasm


	Linux:  tipi build . -t linux


	Windows: tipi build . -t windows


	macOS: tipi build . -t macos




Variations specifiying C++ standard versions are also available (adding the suffix -cxx17 or -cxx20).

> hint: The . (dot) in the commands above can be any path containing C++ source files or a C++ CMake project.

## Building in the tipi.build cloud

`bash
tipi build . -t linux-cxx17
`

Will provision an environment as described in ~/.tipi/<distro>/environments/linux.pkr.js (or %TIPI_HOME%<distro>environmentslinux.pkr.js) on the tipi.build and run the build using your tipi subscription.

All required files will be synchronized bidirectionally to and from the tipi build node as necessary.

## Building on your local machine

`bash
tipi . -t linux-cxx17
`

When your machine fits your target environment you can also use the tipi provided toolchain to build locally.

## Running apps on remote environments

Make use of your subscription to run your application on the remote tipi node:

`bash
tipi -t macos-cxx17 .run build/bin/app
`

> Notes:
>
> - all paramters after .run are forwarded to the remote environment
> - the standard IO is redirected to the calling console

## Running within the tipi environment for your local machine

`bash
tipi run build/bin/app
`

Will run a command within the tipi environment on your local machine. Note the abscence of . in front of run vs.

## Customizing environments

Tipi environments can be customized to your need by creating the required set of CMake toolchain and Packer file.

Examples can be found at [tipi-build/environments](https://github.com/tipi-build/environments) .

Once they are stored in ~/.tipi/<distro>/environments/<environment>.pkr.js and ~/.tipi/<distro>/environments/<environment>.cmake a tipi build . -t <environment> will start the image creation the tipi cloud and then build the current sources.

Image creation and storage are billed on your subscription. Non-currated images[^1] are stored for 14 days after the last usage before being evicted from cache. Tipi provides consulting services for the creation of custom images is required, please contact us for more information.

[^1]: to have an environment definition currated, please submit a pull request to [tipi-build/environments](https://github.com/tipi-build/environments) on Github. Tipi will then take care of having the images maintained and deployment ready at all time.



            

          

      

      

    

  

    
      
          
            
  —
title: Build by convention
order: 2
—

## Why ?

Why did we ever write makefiles, CMakeLists.txt or configure IDE project settings? And why are we still doing it ?

Andrew Koenig once coined FTSE, the [Fundamental theorem of software engineering](https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering):

> “We can solve any problem by introducing an extra level of indirection.”

Building applications is an extremely complex problem, and the layers are almost infinite: linker, assembler, compiler, frontend, build-system ( I.e. make ), meta-build-system ( I.e. cmake ) to quote only a few.

_Tipi_ leverages all the fabulous work done in these layer to finally make building C++ a humane task.

## Because


	C++ code expresses explicitely enough what is an application entrypoint and what is reusable library code.


	There’s no need to learn a new language to specify how to build.


	_We are tired of specifying each single file that should be built._




## Convention by example

Take the idea of building a game project. This game project will contain:


	the game domain with the player characters, game menu and so on


	the game app itself


	tools apps like game maps and texture editor




The directory could look like this


	<div class=”columns”>
	
	<div class=”column is-10”>
	
	<content-img-figure src=”./assets/build-by-convention-00.png”>
	game directory tree as in tipi demo





</content-img-figure>





</div>





</div>

game.cpp has a main function each, therefore they are apps by convention.

The main function may look like:


	<div class=”columns”>
	
	<div class=”column is-10”>
	
	<content-img-figure src=”./assets/build-by-convention-01.png”>
	game main function





</content-img-figure>





</div>





</div>

During the can of src/ _tipi_ classifies the *.hpp and *.cpp which do not have any entrypoint to the library code ( i.e. the game domain).

In tools/ map_editor.cpp and texture_editor.cpp are found to both have main() functions, which has the apps convention kick-in.

The apps convention allows to have supporting file residing locally, therefore common.cpp is linked to map_editor and texture_editor. The header common.hpp is accessible via #include “common.hpp” or #include <common.hpp> while the classes in src/game_classes/* are exported on the compiler include dirs which makes them usable via #include <game_classes/*.hpp>.

tipi will give the following summary:


	<div class=”columns”>
	
	<div class=”column is-10”>
	
	<content-img-figure src=”./assets/build-by-convention-02.png”>
	build summary





</content-img-figure>





</div>





</div>

Resulting in a bin folder like the following:


	```
	<target>/bin
├── game.exe                // game.cpp
├── demo.lib                // game_classes *.cpp
└── tools


├── map_editor.exe      // common.cpp, map_editor.cpp
└── texture_editor.exe  // common.cpp, texture_editor.cpp








```

### Conventions Types

Main conventions:


	every project is a library. ( ref: [every project is a library](/documentation/#every-project-is-a-library))


	each git repositories passed to tipi results in one library




> All the conventions described are applied if required and/or possible based on tipi’s smart detection
>
> It is possible to specify or reduce the scope of a library within a project in case the detection fails or hinting is required:
>
> - by adding parameters: tipi -s library-dir
> - by adding dependency descriptors in the .tipi/deps file: “dependency/repo”: { “s” : [ “library-dir” ] }
>
> …with -s (or the s key) specifying the additional search path for _source_ files. Multiple entries can be specified
> both a multiple -s parameters or multiple entries in the s key.

#### Split libraries


	```
	.
├── include
│   └── header.hpp
└── src


└── impl.cpp








```

One typical kind of C++ project is when headers and implementation files are split in different folders. _tipi_ will consider the include/ folder to be the publicly installable headers and src/ folder to contain the implementation files constituing the library.

> _tipi_ checks the presence of include/, inc/, src/ and sources/ to infer this convention.

#### Samedir libs


	```
	.
└── src


├── header.hpp
└── impl.cpp








```

Another typical convention C++ programmers use is having implementation and headers residing at the same level of the project’s directory hierarchy.

> _tipi_ checks the presence of src/ and sources/ to infer this convention and the absence of main() functions in the files.

#### toplevel libs

These are libraries that don’t have any special source folder, their headers are directly rooted at the top of their repositories.

When this is detected the same mechanism as for samedir libs applies.

> In this kind of structure disambiguation it might be required to to tell which directories are part of the lib using the tipi -s switch or the matching .tipi/deps configuration.

#### headeronly libs

<!– ::::TODO rewrite this part:::: –>

It is possible to have code which is completely header only while application entrypoints are in .cpp files aside materializing either lib examples or a corresponding app.

The headers will be put at disposal like in the aforementioned conventions with #include <>.

#### apps

Any .cpp file with an entrypoint is considered to be an app.

For example any file containing a main() function or a macro instantiating a main() function (as commonly used in unit testing frameworks) will be compiled as an application.

> apps are always linked to the project library.
>
> if others .cpp files reside at same or deeper filesystem directories they get linked with the applications in question. Exception to this rule are those directories explicitely declared in the s/ -s configuration.

#### tests or examples

Equivalent to the apps convention, however they will registered within the CMake CTest test driver and calling tipi . --test all will run them all and report result status.

This convention kicks-in when files with main() functions in parent folder are named after one of test, tests, example, examples

#### html

Any .html file containing <script type="text/c++"></script> in it is compiled using the app convention.

### When conventions are not enough

In some cases you may find that the convention based build doesn’t suit your needs or fails on certain edge-cases.

In such a case please reach out using our [community support forum](https://github.com/tipi-build/community-support) or your premium support option.

Alternatively you can also try to tweak the build as explained in the chapters below. We’d really love to hear about your issues with the smart build algorithm still in order to improve _tipi_ and find a way for the convention build to work, because we firmly believe that _less CMakeLists is more time for your C++_.

#### Override convention build for specific directories

Add an empty marker file use-cmake.tipi and a valid CMakeLists.txt to the folder you want to exclude from the convention based build.

This can be useful for custom test framework or in cases you need to use specific CMake features not yet supported by tipi.

#### Tweaking convention build

_Tipi_ relies on CMake and the way me use it can be customized by adding CMakeLists.txt.tpl files in your project.

The CMakeLists.txt.tpl can be placed anywhere in the project and are applied to the matching sub-tree.

To generate a sample CMakeLists.txt.tpl with the docs embedded of the different variables at your disposal run tipi cmaketpl in any project folder.



            

          

      

      

    

  

    
      
          
            
  —
title: Dependencies and project configuration
order: 3
—
## Intro and Examples

_Tipi_ enables comfortable consumption of dependencies from multiple source like _GitHub.com_ repositories or _CMake Hunter_ provided packages.

Dependencies are specified in a project specific .tipi/deps file which can look like this:

```json
{


“gh-user/repo”: {},
“tipi/gh”: { “@” : “v0.0.1” },
“gh-user/another-repo@file://repo-sub/folder”: {},
“file://local-subfolder”: {},
“platform”: [ “Boost::+boost” ]





}

This dependency specification ( aka depspec ) file tells _tipi_ on which libraries your project depends.

Every key of the JSON object represent a _library in repository URI_.


	“gh-user/repo”: repository at https://github.com/gh-user/repo


	“tipi/gh”: repository at https://github.com/tipi/gh


	“gh-user/another-repo@file://repo-sub/folder”: library residing in ./repo-sub/folder/ of the _GitHub.com_ repository at https://github.com/gh-user/another-repo


	“file://local-subfolder”: library residing in the same file tree at ./local-subfolder


	“platform”: however specifies a dependency on a commonly consumed package that is shipped as a part of the _tipi_ currated “platform” package (that have been tested and integrated on all the supported toolchains).




Dependencies from remote repositories will be fetched by tipi at build time and compiled by convention and finally installed into ./build/<platform>/sysroot.

In this specific case :


	for gh-user/repo the latest revision of the default branch (usually master) will be fetched on every build[^1].


	for tipi/gh release/tag v0.0.1 will be fetched once and always used from cache


	for gh-user/another-repo@file://repo-sub/folder the specified sub-folder of latests revision of the default branch will be fetched and built


	for file://local-subfolder the locally residing library in ./local-subfolder will be built and installed


	Boost headers distribution will be downloaded once and installed to the build using to _CMake Hunter_.




## depspec syntax

The <project>/.tipi/deps file contais a JSON object whose keys are either _configuration entries for the local project_ or _library in repository URI_ and the corresponding value contains the configuration required to consume those libraries as C++ dependencies.

The simple example below would have _tipi_ always pull and compile the latest revision of the default branch of https://github.com/cpp-pre/json :

```json
{


“cpp-pre/json” : {}






}

The key “cpp-pre/json” is a github repository path (URI fragment “after” the github.com/ URI). It can be any of the following :


	gh-user/gh-repo : Github.com repository path


	file://local/path URI to represent a local dependency within the current project


	gh-user/gh-repo@file://libs/sublibrary dependency to a _part_ of a remote repository




In addition to the basic _library in repository_ information following configuration attributes can be provided to customize how the dependency should be consumed.

```json
{



	“<lib-in-repo-uri>”{
	“@” : “<branch/tag/name>”,
“s” : [“<src-disambiguation>”, …],
“x” : [“<excluded-directory>”, …],
“u” : <use-cmakelists::Boolean>,
“packages”: [“<Package Config name>”, …],
“targets”: [“<target name>”, …],

“@:<target>” : “<branch/tag/name>”,
“s:<target>” : [“<src-disambiguation>”, …],
“x:<target>” : [“<exclude dir>”, …],
“u:<target>” : <use-cmakelists::Boolean>,

“requires” : { … }





},

“platform[:target-platform]” : [“<dep>::<component>”, …],
“platform[:target-platform]” : [{ “packages” : [], “targets” : [], “find_mode”: “” }, …],

“s” : [“<src-disambiguation>”, …],
“x” : [“<excluded-directory>”, …],
“u” : <use-cmakelists::Boolean>,
“s:<target>” : [“<src-disambiguation>”, …],
“x:<target>” : [“<exclude dir>”, …],
“u:<target>” : <use-cmakelists::Boolean>,
“packages”: [“<Package Config name>”, …],
“targets”: [“<target name>”, …],
“find_mode”: “”,
“requires” : { … }






}

> All configuration attributes are optional and can be ommitted.

### Details

#### - @ : tag or branch name


	if ommited the default branch of the dependency is fetched on every build (unless -n used [^1])


	if a tag is specified is fetched once, then will be pulled from local cache on subsequent build


	if a branch name is specified, the latestest revision of the _branch_ is fetched on every build (unless -n used [^1])




> You can suffix the key with the target platform to selectively use a specific dependency version on certain platforms, e.g.
> specifying “@:wasm-cxx17” : “v0.0.1” will select the version v0.0.1 for the WebAssembly target and fall back to the latest
> revision of the default branch for all other targets
>
> This attribut cannot be specified in the _local project context_

#### - s : source dir disambiguation

If a repository contains multiple sources directories with uncommon name they can be added to the list of includes
or files to link with by using the source dir disambiguation attribute s.

This disables most of the smart inclusion detection and lists the paths in the build process.

> As for @ selective inclusion by platform can be specified by adding a target platform suffix:
>
> Adding “s:vs-16-2019-win64-cxx17” : [“src/visual-c”] will compile with the src/visual-c on vs-16-2016 target.

#### - x : exclude directory from scan

Directories can be explicitely excluded from source scanning by listing them in the x attribute. Directories starting with a . (dot) are ignored by default

> You can suffix the key it with the target platform to selectively include implementation dir by platform
>
> Specifying "x:wasm-cxx17" : ["src/native-code"] will compile the project without the sources found in the src/native-code directory for the WebAssembly target.

#### - u : use CMakeLists

Setting this to true will disable the convention build and have tipi rely on the CMakeLists.txt file found in the project.

> Note: this property expect a boolean value, so the deps specification shall not contain quotation marks

#### - packages, targets

Useful in combination with the option u / use CMakeLists as it allows to set the packages and targets we expect from the dependency to be searched for via CMake find_package.

The following example shows how to build the library libgit2 using the provided project CMakeLists and it’s own specific targets.

```json
{



	“tipi-build/libgit2”{
	“@” : “v1.1.0-cmake-findpackage”,
“u” : true,
“packages”: [“libgit2”], “targets”: [“libgit2::git2”]





}






}

#### - requires sub-depspec

When using non-tipi dependencies the requires attribute allows you to specify additional dependencies.

```json
{



	“arun11299/cpp-jwt”{
	“@” : “master”,
“x” : [“/tests/” ,”examples/”, “include/jwt/test”],
“requires” : {


“nlohmann/json” : { “@” : “v3.1.2” }
<…things omitted…>




}





}






}

With the value of requires being a full “sub-depspec” (with unlimited nesting).

This attribution can be useful to change a transitive dependency, for example if you prefer to use BoringSSL in place of OpenSSL for a libary which would depend on OpenSSL.

#### - platform[:target-platform] tipi platform libraries

You can specify _tipi_ provided dependencies from a currated list of platform dependencies[^2]. These libraries are considered to be widely used and are generally tested on the supported platforms and environments.

`json
"platform[:target-platform]" : ["<dep>::<component>", ...]
`

By adding a :target-platform suffix dependencies can be selectively included only for certain targets.

If both platform and a matching platform::target the union set of both will be used.

The platform library dependencies have to be specified as follows:


	“PackageName::+component” if the component is an option of PackageName to be linked but is always shipped with PackageName ( e.g. header only Boost distribution via “Boost::+boost” if our project uses that)


	“PackageName::component” if the component is to be linked and needs to be fetched separately. ( e.g. “Boost::filesystem” is not shipped in the header only distribution of Boost, so it has to be declared explicitely)


	“target::native-name” if the component is already installed on the environment and should be used. ( e.g. linking against libdl.so on Linux can be specified by adding “linux::dl” )




##### CMake built platform dependencies
Further narrowing the specification for CMake find_package by setting packages, targets and find_mode can be achieved by:

`json
"platform[:target-platform]" : [{ "packages" : [], "targets" : [], "find_mode" : "" }, ...]
`

This can be useful for platform packages that need to be imported in a specific way, for example when accomodating for the use of complex systems like PkgConfig or because the package needs to be searched in CMake CONFIG modes.

An example would be depending on the ICU unicode library :

`json
"platform":[{"find_mode":"CONFIG", "packages" : ["ICU"], "targets" : ["ICU::uc"] }]
`

Note: For a list of available platform libraries please refer to [^2] .

### platform packages vs tipi dependencies

_tipi_ was built around a few opinionated choices among which was the descision to provide the ability to consume widely used C++ libraries via the “platform” library specification.

This makes their usage more common and via a single inclusion without needing to search the exact repository on github.

### Local project configuration

In order to provide configuration options for the local project (the project containing the .tipi/deps file) you can use the same configuration attributes as
for dependencies at the root level of the configuration object.

```json
{


“s” : [“<src-disambiguation>”, …],
“x” : [“<excluded-directory>”, …],
“u” : <use-cmakelists::Boolean>,
“s:<target>” : [“<src-disambiguation>”, …],
“x:<target>” : [“<exclude dir>”, …],
“u:<target>” : <use-cmakelists::Boolean>,
“packages”: [“<Package Config name>”, …],
“targets”: [“<target name>”, …],
“find_mode”: “”,
“requires” : { … }






}

> All configuration properties except the @ section are available, including the option to specify build target specific source desambiguation or inclusion rules.

[^1]: Unless the -n switch is used which then uses any previously downloaded revision

[^2]: Tipi relies on the structure provided by the platform base project for platform dependencies. You can explore it here: https://github.com/nxxm/hunter/blob/develop/cmake/configs/default.cmake




            

          

      

      

    

  

    
      
          
            
  —
title: Compile options
order: 4
—

# Compile options

## Passing -D defines

Example:

`bash
tipi . -DSOME_OPTION=1 -DOTHER_OPTION=OK
`

> The defines will transitively be passed to all your dependencies build as well.

## Compile options

_Tipi_ relies on the CMake project, which allows you to tweak the compilation flags even though _tipi_ typically sets sane defaults for you.

You may add your own toolchain files in <tipi-home>/environments/<distro> which is the preferred option.

If you specify compile options, they will be applied to all projects in the build tree in the context of the toolchain specific sysroot.

## opts file

You may specify project and target specific opts by creating opts[.target-platform] files in <project-root>/.tipi/.

The opts files have to contain valid CMake Syntax. For example to pass #defines or compile options this way simply add:

`cmake
add_compile_options( -fmath-errno -Wextra )
add_compile_definitions( DEFINE_TO_PASS_WITHOUT_D_BEFORE=1 )
`

> If both a matching target-platform .tipi/opts.target-platform file and a non specific .tipi/opts file are defined the contents of both are injected into the build



            

          

      

      

    

  

    
      
          
            
  —
title: Authentication
order: 5
—

# Authentication

Both your local _tipi_ CLI installation as well as your tipi.build cores and nodes require access to your tipi
account to be able to access private repositories and your subscription information.

In order to enable a frictionless usage _tipi_ comes with a crendetials store dubbed _tipi vault_ which is essentially a zero-knowledge encrypted storage linked to your account.

## Creation of the vault

During the onboarding on [tipi.build](https://tipi.build) you will be asked to create said _vault_ and to provide a
passphrase for it. That passphrase is used during the browser session to encrypt the vault and is never sent to our servers.

In the following onboarding steps you will be given the opportunity to grant your account access to private
repositories on Github.com which is required if you want to consume privatly listed dependencies.

That access can be granted at any time using the [vault dashboard on tipi.build](/dashboard/vault).

## Authenticating to tipi.build with tipi CLI

Run the tipi connect command and follow the instructions.
You will be prompted with a link to authenticate the device on tipi.build. After confirming the access to your vault the CLI will ask for your _vault passphrase_.

> For private cloud and on premise users: you can connect to your private deployment of tipi.build by specifying the TIPI_ENDPOINT environment variable

## Authentication in Continuous Integration context

On non-interactive usages of tipi credentials can be provided by setting the following environment variables: TIPI_ACCESS_TOKEN, TIPI_REFRESH_TOKEN, TIPI_VAULT_PASSPHRASE.

## Authentication with a Personal Access Token on Github

tipi.build grants access to your repositories automatically during the onboarding.

However if you want to grant different access level to repositories from an organization, from another account or that weren’t authorized yet to use tipi.build you can add a [Github Personal Access Token](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token) to your vault.

The personal access token are secured by the vault and are only used by you on your local tipi builds or by the short-lived remote build instances.



	Create a [Github Personal Access Token](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token)


	Open your [tipi.build secure vault](/dashboard/vault)


	Unlock the vault (this happens in your browser, nothing is transmitted to tipi.build)


	Add your Personal Access Token credentials by adding an additional https://github.com or any Github Enterprise endpoint.




![](./assets/add-credentials.png)




Now with the tipi cli you can refresh your authentication data with tipi connect.



            

          

      

      

    

  

    
      
          
            
  —
title: Continuous integration
order: 6
—

## Continous integration with GitHub actions

You tipi subscription can be used to run your build and test your project in github actions.

_TODO_



            

          

      

      

    

  

    
      
          
            
  —
title: Environment variables
order: 7
—

# Environment variables

## Using a private tipi.build instance: TIPI_ENDPOINT

tipi.build can be run on premise or in a private deployment. All users of that deployment need to specify TIPI_ENDPOINT in their environment
to thir tipi CLI to access the correct installation.

## Command line authentication

In non-interactive situation (a CI/CD job, other automated usages) it might be required to provide the tipi CLI with
credentials to access private repositories or make use of the tipi subscription.


	TIPI_ACCESS_TOKEN and TIPI_REFRESH_TOKEN are JWT tokens enabling tipi to get access to the tipi subscription.


	TIPI_VAULT_PASSPHRASE has to be supplied in situations where the user’s Vault must be decrypted (ex. accessing private repos)




## Customizing tools distribution TIPI_DISTRO_JSON

_Tipi_ uses a json file which contains the required tools used by tipi to build projects (like cmake or make). These tools are automatically downloaded and installed on demand by tipi at runtime before running projects build.

The contents of the file can be changed as per your needs for maximum usage flexibility setting the environment variable TIPI_DISTRO_JSON.

The environment variable may point to:


	an absolute or relative file path


	an HTTP(s) url




The original json file can be found at https://github.com/tipi-build/distro/blob/master/distro.json

Below some examples of what you can set as TIPI_DISTRO_JSON:

`bash
export TIPI_DISTRO_JSON="~/projects/tipi/distro.json"
- or -
export TIPI_DISTRO_JSON="/home/user/projects/tipi/distro.json"
- or -
export TIPI_DISTRO_JSON="https://company.com/tipi/distro.json"
`

If TIPI_DISTRO_JSON is a HTTP(s) url, tipi will download the file and check file integrity agains the value in the environment variable TIPI_DISTRO_JSON_SHA1

## Customizing tools distribution TIPI_DISTRO_JSON_SHA1

When a customized TIPI_DISTRO_JSON is downloaded via HTTP(s) _tipi_ performs an integrity check by checking the sha1sum of the downloaded file against the value of TIPI_DISTRO_JSON_SHA1.

For example:
`bash
export TIPI_DISTRO_JSON="https://company/tipi/distro.json"
export TIPI_DISTRO_JSON_SHA1="4eb777d088ea949709e9ea97bbc8c389a63856e2"
`

## Distro installation mode TIPI_DISTRO_MODE

By default _tipi_ only installs the subset of the build tools required to build remotely using the tipi.build cloud.
For local builds you can install force the installation of the required tools locally.

For example:

```bash
export TIPI_DISTRO_MODE=”all” # “full” install - takes ~7gb in TIPI_HOME_DIR



	or -







export TIPI_DISTRO_MODE=”default” # “light” install for remote builds
```



            

          

      

      

    

  

    
      
          
            
  —
title: Ignore and exclude
order: 8
—

## Exclude and ignore using .tipiignore

You can create an ignore file named .tipiignore in the your project.
The syntax is identical to the syntax of .gitignore (official documentation for https://git-scm.com/docs/gitignore)

> Files that are ignored by your .gitignore are not ignored during tipi source scan

> Ignore rules can be provided as well via the -x <ignorerule> command line switch and x attribute in the [depspec](/documentation/02-dependencies)

### Target specific ignore rules using .tipiignore.<target>

If you find the need to specify target specific rules for your build (for example t exclude a target OS specific test or example from your otherwise
fully cross platform compatible library) you can create target sepcific .tipiignore.<target> files in your project.

> Please note that the <target> part requires an exact match (ex. for a tipi . -t linux-cxx17 build you’d create a .tipiignore.linux-cxx17 file).
>
> Additionally the .tipiignore rules are considered a base rule set and are applied for all targets even when a specific match is found:
> this means that rules of  .tipiignore.linux-cxx17 and of a base .tipiignore are additive

### Examples

`gitignore
# exclude everything except directory foo/bar
/*
!/foo
/foo/*
!/foo/bar
`

`gitignore
# exclude every .cpp ending by a number or by .swp.
[0-9].cpp
*.swp.cpp
`



            

          

      

      

    

  

    
      
          
            
  —
title: IDE Integration
order: 9
—

# Integration in IDEs and Native build systems

_Tipi_ is available as a [command line tool](/documentation#getting-started) and an official [<img src=”~/assets/vscode.png” style=”height: 1em; vertical-align: middle;”>&nbsp; Visual Studio Code extension](https://marketplace.visualstudio.com/items?itemName=tipi.tipi-build)

Additionally it is easy to integrate _tipi_ with IDEs and other build systems as it relies on CMake internally.

## Eclipse CDT Integration

By using a [CMake Generator](https://cmake.org/cmake/help/v3.18/manual/cmake-generators.7.html#cmake-generators) tipi can be nicely integrated
with Eclipse CDT Integration, including custom targets to build using your tipi.build cloud subscription.

To setup an eclipse project with tipi, simply run: tipi build . -G “Eclipse CDT4 - Unix Makefiles” and open the project in Eclipse CDT.

<!–
Note @daminetreg: I don’t get the feature. Please explain it to me asap

## Customizing default build_engine_mapping.json

When no Generators are provided, tipi either takes the best default or selects it from build_engine_mapping.json ( c.f. In TIPI_HOME_DIR : <distro-id>/environments/build_engine_mapping.json ).

This file allows to make the link between the target name vs-<XX>-<XXXX>-win64-cxx17 and the actual native build system used. It’s mostly useful with windows MSVC which requires specific MSBuild version to be used.
–>



            

          

      

      

    

  

    
      
          
            
  —
title: Data Security and Privacy
order: 10
—

# Data Security and Privacy

## Website data
The first data tipi.build gets are from visitors and user of the tipi.build webapp. As you might have noted, tipi doesn’t require submitting cookie preferences. It’s because we don’t use any third party cookies to track users and tipi doesn’t share any user data to a separate analytics platform or third parties.

The tipi.build web platform is a fully custom implementation and does not relly on 3rd party services (except for cloud server hosting obviously). The data that we log is anonymized and used only for short-term debugging purposes.

## Authenticating registered users
We rely on external OAUTH providers like Github.com to authenticate users, and only ask access to the user name and email. We use these information and store them in our database along with a generated unique identifier to authenticate actions on the website.

## User’s source code
To guarantee full data privacy and security the tipi.build cloud has no access to the user’s source code outside of interactive sessions.


	<div class=”columns”>
	
	<div class=”column is-full “>
	

	<content-img-figure src=”./assets/architecture-layered.drawio.png”>
	tipi.build cloud : Source code is only in clear-text on the local and on the short-lived build runner instance





</content-img>




</figure>





</div>





</div>

Indeed only the tipi cli tool scans user source code and it does this either locally or remotely within a short-lived build runner instance ( _i.e._ A freshly provisioned virtual machine ) started for the current build session.

The local tipi cli encrypts the source code folder as encrypted+compressed AES 256/CBC blocks that are transmitted via tipi’s storage server to the short-lived build runner over a TLS connection.

The tipi storage server only ever sees an encrypted block, while the short-lived build runner decrypts it into an hard disk encrypted storage to run the build.

The storage server encrypted+compressed AES 256/CBC blocks and the short lived build runner are deleted after a timeout at the end of the build session.

The short-lived remote build runner is made accessible only trough asymetric cryptography generated on each new build session, which means that only the local machine sending the source code and initiating the session has the data to access the short-lived remote build runner and the decrypted sources.

### tipi’s secure vault : private repositories
On the first registration tipi.build users are asked to create a so-called tipi vault. The tipi.build vault is a cryptographically secure container that stores access tokens to user’s private repositories hosted elsewhere ( _e.g._ on Github.com ).

These tokens are encrypted and decrypted using the user’s vault passphrase by an [open source C++ client-side only software library](https://github.com/tipi-build/vault) that is run in webassembly in the browser and natively in the build nodes. The vault passphrase is never shared to the tipi.build cloud.

The vault is uploaded by the user’s browser as a purely encrypted binary blob, which means that even if our always up-to-date, 24/7 monitored website gets hacked and someone steals the tipi.build database, it will find at best user emails and encrypted blob that would take him more than 20 years for today’s supercomputer to bruteforce the information.

No serious attacker would actually choose this road, as the encrypted token after such a databreach would all be revoked by tipi.


	<div class=”columns”>
	
	<div class=”column is-full”>
	

	<content-img-figure src=”./assets/vault_management.png”>
	With the tipi.build vault all authentication data is only known by the local browser or the user current machines





</content-img>




</figure>





</div>





</div>

### tipi computer pairing
To use tipi.build remote compilation and execution capabilities, it is possible to locally save a vault for use on the user computer. That means if the computer is attacked or at risk, the tokens in the vault might get stolen ( they are not saved in clear-text though ).

If an user ever suspect that his computer was subject of an attack or a data breach, it is possible to revoke access anytime and regenerate the vault and it’s tokens.


	<div class=”columns”>
	
	<div class=”column is-full”>
	

	<content-img-figure src=”./assets/tipi_access_tokens.png”>
	tipi.build : revoke local machines access tokens to the tipi.build account





</content-img>




</figure>





</div>





</div>



            

          

      

      

    

  

    
      
          
            
  —
title: Build cache
order: 6
—

# Tipi build cache
Starting from v0.0.35 tipi provides an automatic versioning-abiding build cache in remote builds.

## Usage
The build cache is enabled by _default_ on remote builds. This means that _any_ build executed on tipi.build cloud machines will benefit from automatic caching: see [how to build for different targets in the tipi build cloud](/explore/remote-build).

### On local builds
For the moment we advice to use remote builds to benefit from the cache and not to use caching on local builds as we cannot provide the same level of isolation and repeatability.

However we are working on this and it is enablable in preview (at your own risks) with the environment variable : TIPI_CACHE_FORCE_ENABLE=ON.

## Rationale
C++ applications often take longer to compile than the developer has time for, which cause slow iteration cycles and thus reduces developer productivity. A common solution is to tighten the scope of the build: consuming dependencies as pre-compiled libraries. This, however, increases the risk of version and ABI mismatches, and thus of shipping bugs to production.

At tipi we decided to provide a solution based on __always building everything from source__ with the same toolchain flags to ensure full correctness of the resulting apps.

This naturally alone would results in correct but very slow compilation. That’s why tipi.build provides a Global Build Cache connected to revision control.

Each git revision is cached incrementally in a very space efficient _comprehensive pack_ file combining the advantages of pre-built binaries and build from sources.

## Source mirroring

![Source code is mirrored in fixed path locations](./assets/cache/01-mirroring.png)

tipi achieves cacheable, correct and repeatable builds for any codebase with caching by relying on the tipi source mirroring mechanisms. This avoids the requirement of required relocatable build or install tree for source code with manually written build scripts and avoids the necessity to patch cached files on extraction.

Whenever you launch a build tipi will produce a mirror of your sources either locally or remotely. This mirroring happens with git by also taking in account your uncommited or ignored data for the build hash.

If you want to fully ignore data for the build you can add them to the .tipiignore file.

## Comprehensive packs
![Multiple revisions are packed together](./assets/cache/04-comprehensive-packs.png)

The cache mechanism first queries the global cache.tipi.build storage. If the code compiled has already been built by a secure tipi.build cloud runner for the same compiler and set of flags ( i.e. So-called _abi-hash_ ) the cache is pulled from the global build cache.

The global cache.tipi.build contains a curated list of open-source projects cached for the default toolchains delivered by tipi.

If the project has never been built by tipi.build or is private, a build is started and the build is made in isolation and stored in the user private build cache. The cache is always stored privately linked to the user source code hosting account under the repository username/cache.tipi.build (tipi creates this repository as private repository automatically when the cache is active).

![Private user build cache](./assets/gh-cache-example.png)

Each _comprehensive pack_ are stored as releases artifacts for each platform, identified by the cache-id that tipi computes from the git repository origin url and that can be overriden via the [.tipi/id](#cache-id-file) file.

### Cache id file
tipi automatically generates a .tipi/id file when building a project, this file is intended to be checked-in the repository and identifies the project cache-id, the resulting id is the sha1-hash(<host + organization name>)-<project name>.

For instance a repository that was cloned from github.com/tipi-build/simple-example will have a cache-id of 40999a5-simple-example influenced by the following .tipi/id.
```json
{


“host_name”:”github.com”,
“org_name”:”tipi-build”,
“repo_name”:”simple-example”





}

This id can then be found in the tipi source mirroring directory ( i.e. Unixes : /usr/local/share/.tipi/w , Windows : C:.tipiw )




            

          

      

      

    

  

    
      
          
            
  —
title: Intro and getting started
order: 0
—

# Introduction

Tipi solves three of the most common problems C++ developper face day to day: dependency management, long build times and environments:


	speed up your workflow with powerful multiplatform cloud environments


	fetch dependencies straight from git repositories, no need to wait for package definitions


	shipped with a useful set of tools on three platforms




## Getting started


	create your account on [tipi.build](https://tipi.build/)


	
	install tipi :
	
	Tipi Visual Studio Code extension: &nbsp; [<img src=”~/assets/vscode.png” style=”height: 1em; vertical-align: middle;”>&nbsp; Add to Visual Studio Code](https://marketplace.visualstudio.com/items?itemName=tipi.tipi-build)


	Command line util:












```bash
# Linux & MacOS:
/bin/bash -c 


“$(curl -fsSL https://raw.githubusercontent.com/tipi-build/cli/master/install/install_for_macos_linux.sh)”




```

```powershell
# Windows 10 / 11 in Powershell
[Net.ServicePointManager]::SecurityProtocol = “Tls, Tls11, Tls12, Ssl3”
. { `


iwr -useb https://raw.githubusercontent.com/tipi-build/cli/master/install/install_for_windows.ps1 `




} | iex

# P.S.: we highly recommend you give a the new Windows Terminal app a try. It truly augments your
# console experience on Windows!
```


	run tipi connect and link your installation to your [tipi.build](https://tipi.build/) account so you can use your tipi subscription


	create an empty folder for the example project on your disk


	create an example.cpp and write a simple hello world:




```cpp
#include <iostream>


	int main(int argc, char** argv) {
	std::cout << “tipi is cool ! ” << std::endl;
return 0;






}

> ##### Note on platforms and environments:
>
> You can replace occurences of linux-cxx17 in the instructions below with windows or macos-cxx17 when using your subscription
> or the environment matching your machine’s platform
>
> On Linux: linux-cxx17 or linux-cxx20
>
> On MacOS: macos-cxx17 or macos-cxx20
>
> On Windows: windows or windows-cxx17 or windows-cxx20 or vs-16-2019-cxx17 (if you have Build Tools for Visual Studio 2019 installed)
>
>
> When using your tipi subscription to build or run, a cloud node of the corresponding platform is deployed in the tipi cloud.


	
	build the example using either:
	
	your [tipi subscription](https://tipi.build/dashboard/subscription): tipi -t linux-cxx17 build .


	your local machine: tipi -t linux-cxx17 .










	
	run the resulting binary using:
	
	your [tipi subscription](https://tipi.build/dashboard/subscription): tipi -t linux-cxx17 .run build/linux-cxx17/bin/example


	your local machine: tipi run build/linux-cxx17/bin/example [^1]










	
	Add a dependency from Github: we’re going to add a json manipulation library from: [github.com/nlohmann/json](https://github.com/nlohmann/json)
	
	create a file .tipi/deps with content












```json
{


“nlohmann/json” : { “@” : “v3.10.4” }






}

> Note: we are pinning the version of the dependency to the tagger release v3.10.4 (list can be found under
> [nlohmann/json/releases](https://github.com/nlohmann/json/releases) ). At time of building tipi will
> pull the release from the github repository and build it. If you want to live on the edge, you can remove
> the @ pin or write a branch name like master in there.


	Edit your example.cpp:




```cpp
#include <iostream>
#include <nlohmann/json.hpp> // tipi.build will find it online

int main(int argc, char** argv) {


std::cout << “Wonderful JSON formatter with tipi is cool ! ” << std::endl;

auto json = nlohmann::json::parse(argv[1]);
std::cout << json.dump(2) << std::endl;
return 0;






}


	Compile and run (see #6 and #7 above):




```bash
$> tipi run ./build/linux-cxx17/bin/example ‘[4,52,25]’
Wonderful JSON formatter with tipi is cool !
[


4,
52,
25






]

## Key principles and goals

### Finally: the C++ flow


	Code scanning & conventions over build configuration


	
	0 setup - just coding
	
	select one environment from our [supported list](https://github.com/tipi-build/environments) or [specify your own](https://tipi.build/documentation/00-environments#customizing-environments)


	tipi downloads & installs the compiler and libraries in an isolated distro folder automatically












### Environments on demand

We automatically provision repeatable build environments on powerful cloud build machines when you need them.
Learn more about how tipi environments are specified: [environment](/documentation/00-environments)

### Every project is a library

In a software project there are 2 kinds of entrypoints:


	Developer entrypoints for code reuse


	End-user entrypoints for application use




By default tipi automatically builds both a library and an application (if something like a main() is found) from your sources to ease reuse.

### Don’t pay for what you don’t use

This is a core C++ design philosophy, and sadly the world of packages manager obliges you to take more than you need.

By definition a package does _pack_ of alot of things, and the final application won’t need all of them.

tipi allows you to do a fine-granular selection of your dependencies and pulls only the bits that are really required in your final application.

### Opinionated defaults (but you choose)

While tipi clearly is set out to enable you to _build anything_ without complex scripts, we don’t hold you back to customize parts (or all of) the build with CMakeLists.txt.tpl or CMakeLists.txt files associated with use-cmake.tipi files.

[^1]: by using tipi run to launch the binary you make sure your OS as has all the required libraries in its search path, for ex. the libstdc++6 on windows.

### tipi installation location ( former TIPI_HOME_DIR )

When launching tipi for the first time tipi will be installed at :



	On Windows: `C:.tipi`


	On other platforms: /usr/local/share/.tipi/







_tipi_ will install dependencies, environment descriptions and tools for your environments in that location.

I case you want to specify an alternate location (if you don’t have much space or no permission to write to that part of the disk)
you should use the mechanisms of filesystem junctions and bind mounts.

We guarantee the paths even in non-containerized builds to enable caching of artifacts.




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





